Astrocytic CD24 Protects Neuron from Recombinant High-Mobility Group Box 1 Protein(rHMGB1)-Elicited Neuronal Injury

Author:

Pang Cong,Gao Sen,Liu Xun-Zhi,Li Xiao-Jian,Peng Zheng,Zhang Hua-Sheng,Zhou Yan,Chen Xiang-Xin,Tao Tao,Lu Yue,Li WeiORCID,Hang Chun-HuaORCID

Abstract

Endogenous host-derived molecules named damage-associated molecular patterns (DAMPs) can induce excessive non-sterile inflammatory responses on recognition of specific membrane-tethered receptors. Here in this study, we aimed to explore the role of DAMP molecule HMGB1 in astrocyte-mediated sterile neuroinflammation and the resultant influences on neurons. In vitro cultured astrocytes were challenged with rHMGB1 and then harvested at 6 h, 12 h, 24 h, 36 h, and 48 h, respectively. The astrocytic CD24 expression was determined by quantitative real-time polymerase chain reaction (qPCR), Western blot analysis and immunofluorescence, nuclear factor kappa B (NF-κB) binding activity was detected by electrophoretic mobility shift assay (EMSA), and the proinflammatory factors, tumor necrosis factor-α (TNF-α), and interleukin 1β (IL-1β), were measured by qPCR. The neuronal morphology was assessed with phase-contrast microscopy. The results showed that astrocytic mRNA and protein CD24 expression began to rise at 24 h, peaked at 36 h, and remained elevated at 48 h after rHMGB1 stimulation, accompanied with enhanced NF-κB binding activity and augmented expression of TNF-α and IL-1β. Furthermore, rHMGB1 caused cocultured neuron damage and was aggregated upon CD24 knockdown. Taken together, these novel findings suggested that rHMGB1 could promote astrocytic CD24 expression, the inhibition of which could aggregate neuronal damage.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Publisher

MDPI AG

Subject

General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3