NKCC1 Deficiency in Forming Hippocampal Circuits Triggers Neurodevelopmental Disorder: Role of BDNF-TrkB Signalling

Author:

Szymanski Jacek,Minichiello LilianaORCID

Abstract

The time-sensitive GABA shift from excitatory to inhibitory is critical in early neural circuits development and depends upon developmentally regulated expression of cation-chloride cotransporters NKCC1 and KCC2. NKCC1, encoded by the SLC12A2 gene, regulates neuronal Cl− homeostasis by chloride import working opposite KCC2. The high NKCC1/KCC2 expression ratio decreases in early neural development contributing to GABA shift. Human SLC12A2 loss-of-function mutations were recently associated with a multisystem disorder affecting neural development. However, the multisystem phenotype of rodent Nkcc1 knockout models makes neurodevelopment challenging to study. Brain-Derived Neurotrophic Factor (BDNF)-NTRK2/TrkB signalling controls KCC2 expression during neural development, but its impact on NKCC1 is still controversial. Here, we discuss recent evidence supporting BDNF-TrkB signalling controlling Nkcc1 expression and the GABA shift during hippocampal circuit formation. Namely, specific deletion of Ntrk2/Trkb from immature mouse hippocampal dentate granule cells (DGCs) affects their integration and maturation in the hippocampal circuitry and reduces Nkcc1 expression in their target region, the CA3 principal cells, leading to premature GABA shift, ultimately influencing the establishment of functional hippocampal circuitry and animal behaviour in adulthood. Thus, immature DGCs emerge as a potential therapeutic target as GABAergic transmission is vital for specific neural progenitors generating dentate neurogenesis in early development and the mature brain.

Funder

Medical Research Council

Publisher

MDPI AG

Subject

General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3