Exercise-Induced Fatigue in One Leg Does Not Impair the Neuromuscular Performance in the Contralateral Leg but Improves the Excitability of the Ipsilateral Corticospinal Pathway

Author:

Aboodarda Saied Jalal,Zhang Cindy Xin Yu,Sharara Ruva,Cline Madeleine,Millet Guillaume YORCID

Abstract

To investigate the influence of pre-induced fatigue in one leg on neuromuscular performance and corticospinal responses of the contralateral homologous muscles, three experiments were conducted with different exercise protocols; A (n = 12): a 60 s rest vs. time-matched sustained left leg knee extension maximum voluntary contraction (MVC), B (n = 12): a 60 s rest vs. time-matched left leg MVC immediately followed by 60 s right leg MVC, and C (n = 9): a similar protocol to experiment B, but with blood flow occluded in the left leg while the right leg was performing the 60 s MVC. The neuromuscular assessment included 5 s knee extensions at 100%, 75%, and 50% of MVC. At each force level, transcranial magnetic and peripheral nerve stimuli were elicited to investigate the influence of different protocols on the right (tested) knee extensors’ maximal force output, voluntary activation, corticospinal excitability, and inhibition. The pre-induced fatigue in the left leg did not alter the performance nor the neuromuscular responses recorded from the right leg in the three experiments (all p > 0.3). However, enhanced corticospinal pathway excitability was evident in the tested knee extensors (p = 0.002). These results suggest that the pre-induced fatigue and muscle ischemia in one leg did not compromise the central and peripheral components of the neuromuscular function in the tested contralateral leg.

Publisher

MDPI AG

Subject

General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3