Mindfulness-Enhanced Computerized Cognitive Training for Depression: An Integrative Review and Proposed Model Targeting the Cognitive Control and Default-Mode Networks

Author:

Bursky MikellORCID,Egglefield Dakota A.,Schiff Sophie G.,Premnath Pranitha,Sneed Joel R.

Abstract

Depression is often associated with co-occurring neurocognitive deficits in executive function (EF), processing speed (PS) and emotion regulation (ER), which impact treatment response. Cognitive training targeting these capacities results in improved cognitive function and mood, demonstrating the relationship between cognition and affect, and shedding light on novel targets for cognitive-focused interventions. Computerized cognitive training (CCT) is one such new intervention, with evidence suggesting it may be effective as an adjunct treatment for depression. Parallel research suggests that mindfulness training improves depression via enhanced ER and augmentation of self-referential processes. CCT and mindfulness training both act on anti-correlated neural networks involved in EF and ER that are often dysregulated in depression—the cognitive control network (CCN) and default-mode network (DMN). After practicing CCT or mindfulness, downregulation of DMN activity and upregulation of CCN activity have been observed, associated with improvements in depression and cognition. As CCT is posited to improve depression via enhanced cognitive function and mindfulness via enhanced ER ability, the combination of both forms of training into mindfulness-enhanced CCT (MCCT) may act to improve depression more rapidly. MCCT is a biologically plausible adjunct intervention and theoretical model with the potential to further elucidate and target the causal mechanisms implicated in depressive symptomatology. As the combination of CCT and mindfulness has not yet been fully explored, this is an intriguing new frontier. The aims of this integrative review article are four-fold: (1) to briefly review the current evidence supporting the efficacy of CCT and mindfulness in improving depression; (2) to discuss the interrelated neural networks involved in depression, CCT and mindfulness; (3) to present a theoretical model demonstrating how MCCT may act to target these neural mechanisms; (4) to propose and discuss future directions for MCCT research for depression.

Publisher

MDPI AG

Subject

General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3