Affiliation:
1. Department of Health and Human Physiology, University of Iowa, Iowa City, IA 52242, USA
2. Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
Abstract
Part I reviews persistent challenges obstructing progress in understanding complex fatigue’s biology. Difficulties quantifying subjective symptoms, mapping multi-factorial mechanisms, accounting for individual variation, enabling invasive sensing, overcoming research/funding insularity, and more are discussed. Part II explores how emerging artificial intelligence and machine and deep learning techniques can help address limitations through pattern recognition of complex physiological signatures as more objective biomarkers, predictive modeling to capture individual differences, consolidation of disjointed findings via data mining, and simulation to explore interventions. Conversational agents like Claude and ChatGPT also have potential to accelerate human fatigue research, but they currently lack capacities for robust autonomous contributions. Envisioned is an innovation timeline where synergistic application of enhanced neuroimaging, biosensors, closed-loop systems, and other advances combined with AI analytics could catalyze transformative progress in elucidating fatigue neural circuitry and treating associated conditions over the coming decades.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献