RIPK1-Induced A1 Reactive Astrocytes in Brain in MPTP-Treated Murine Model of Parkinson’s Disease

Author:

Qiao Chenmeng1,Niu Guyu1,Zhao Weijiang1ORCID,Quan Wei1,Zhou Yu1,Zhang Meixuan1,Li Ting1,Zhou Shengyang1,Huang Wenyan1,Zhao Liping1,Wu Jian1,Cui Chun1,Shen Yanqin1

Affiliation:

1. Department of Neurodegeneration and Injury, Wuxi School of Medicine, Jiangnan University, No. 1800, Lihu Avenue, Binhu District, Wuxi 214122, China

Abstract

Neuroinflammation is one of the hallmarks of Parkinson’s disease, including the massive activation of microglia and astrocytes and the release of inflammatory factors. Receptor-interacting protein kinase 1 (RIPK1) is reported to mediate cell death and inflammatory signaling, and is markedly elevated in the brain in PD mouse models. Here, we aim to explore the role of RIPK1 in regulating the neuroinflammation of PD. C57BL/6J mice were intraperitoneally injected with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP; 20 mg/kg four times/day), followed by necrostatin-1 treatment (Nec-1, RIPK1 inhibitor; 1.65 mg/kg once daily for seven days. Notably, the first Nec-1 was given 12 h before MPTP modeling). Behavioral tests indicated that inhibition of RIPK1 greatly relieved motor dysfunction and anxiety-like behaviors of PD mice. It also increased striatal TH expression, rescue the loss of dopaminergic neurons, and reduce activation of astrocytes in the striatum of PD mice. Furthermore, inhibition of RIPK1 expression reduced A1 astrocytes’ relative gene expression (CFB, H2-T23) and inflammatory cytokine or chemokine production (CCL2, TNF-α, IL-1β) in the striatum of PD mice. Collectively, inhibition of RIPK1 expression can provide neuroprotection to PD mice, probably through inhibition of the astrocyte A1 phenotype, and thus RIPK1 might be an important target in PD treatment.

Funder

National Natural Science Foundation of China

Youth Foundation of Basic Research Program of Jiangnan University

Publisher

MDPI AG

Subject

General Neuroscience

Reference41 articles.

1. Parkinson disease;Poewe;Nat. Rev. Dis. Prim.,2017

2. Parkinson’s disease: Clinical features and diagnosis;Jankovic;J. Neurol. Neurosurg. Psychiatry,2008

3. Defects in trafficking bridge Parkinson’s disease pathology and genetics;Abeliovich;Nature,2016

4. Parkinson’s disease;Samii;Lancet,2004

5. Inflammation and immune dysfunction in Parkinson disease;Tansey;Nat. Rev. Immunol.,2022

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3