Deep Learning Architecture Reduction for fMRI Data

Author:

Alvarez-Gonzalez Ruben,Mendez-Vazquez Andres

Abstract

In recent years, deep learning models have demonstrated an inherently better ability to tackle non-linear classification tasks, due to advances in deep learning architectures. However, much remains to be achieved, especially in designing deep convolutional neural network (CNN) configurations. The number of hyper-parameters that need to be optimized to achieve accuracy in classification problems increases with every layer used, and the selection of kernels in each CNN layer has an impact on the overall CNN performance in the training stage, as well as in the classification process. When a popular classifier fails to perform acceptably in practical applications, it may be due to deficiencies in the algorithm and data processing. Thus, understanding the feature extraction process provides insights to help optimize pre-trained architectures, better generalize the models, and obtain the context of each layer’s features. In this work, we aim to improve feature extraction through the use of a texture amortization map (TAM). An algorithm was developed to obtain characteristics from the filters amortizing the filter’s effect depending on the texture of the neighboring pixels. From the initial algorithm, a novel geometric classification score (GCS) was developed, in order to obtain a measure that indicates the effect of one class on another in a classification problem, in terms of the complexity of the learnability in every layer of the deep learning architecture. For this, we assume that all the data transformations in the inner layers still belong to a Euclidean space. In this scenario, we can evaluate which layers provide the best transformations in a CNN, allowing us to reduce the weights of the deep learning architecture using the geometric hypothesis.

Publisher

MDPI AG

Subject

General Neuroscience

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3