The Pre-Interictal Network State in Idiopathic Generalized Epilepsies

Author:

Pitetzis Dimitrios12ORCID,Frantzidis Christos23,Psoma Elizabeth4,Ketseridou Smaranda Nafsika2,Deretzi Georgia1,Kalogera-Fountzila Anna4,Bamidis Panagiotis D.2ORCID,Spilioti Martha5

Affiliation:

1. Department of Neurology, Papageorgiou General Hospital, 56403 Thessaloniki, Greece

2. Lab of Medical Physics and Digital Innovation, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece

3. School of Computer Science, University of Lincoln, Lincoln LN6 7TS, UK

4. Department of Radiology, AHEPA General Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece

5. 1st Department of Neurology, AHEPA General Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece

Abstract

Generalized spike wave discharges (GSWDs) are the typical electroencephalographic findings of Idiopathic Generalized Epilepsies (IGEs). These discharges are either interictal or ictal and recent evidence suggests differences in their pathogenesis. The aim of this study is to investigate, through functional connectivity analysis, the pre-interictal network state in IGEs, which precedes the formation of the interictal GSWDs. A high-density electroencephalogram (HD-EEG) was recorded in twenty-one patients with IGEs, and cortical connectivity was analyzed based on lagged coherence and individual anatomy. Graph theory analysis was used to estimate network features, assessed using the characteristic path length and clustering coefficient. The functional connectivity analysis identified two distinct networks during the pre-interictal state. These networks exhibited reversed connectivity attributes, reflecting synchronized activity at 3–4 Hz (delta2), and desynchronized activity at 8–10.5 Hz (alpha1). The delta2 network exhibited a statistically significant (p < 0.001) decrease in characteristic path length and an increase in the mean clustering coefficient. In contrast, the alpha1 network showed opposite trends in these features. The nodes influencing this state were primarily localized in the default mode network (DMN), dorsal attention network (DAN), visual network (VIS), and thalami. In conclusion, the coupling of two networks defined the pre-interictal state in IGEs. This state might be considered as a favorable condition for the generation of interictal GSWDs.

Publisher

MDPI AG

Subject

General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3