Adjust Neuronal Reactions to Pulses of High-Frequency Stimulation with Designed Inter-Pulse-Intervals in Rat Hippocampus In Vivo

Author:

Zheng Lvpiao,Feng Zhouyan,Hu Yifan,Wang Zhaoxiang,Yuan Yue,Yang Gangsheng,Lu Chuchu

Abstract

Sequences of electrical pulses have been applied in the brain to treat certain disorders. In recent years, altering inter-pulse-interval (IPI) regularly or irregularly in real time has emerged as a promising way to modulate the stimulation effects. However, algorithms to design IPI sequences are lacking. This study proposed a novel strategy to design pulse sequences with varying IPI based on immediate neuronal reactions. Firstly, to establish the correlationship between the neuronal reactions with varying IPIs, high-frequency stimulations with varying IPI in the range of 5–10 ms were applied at the alveus of the hippocampal CA1 region of anesthetized rats in vivo. Antidromically-evoked population spikes (APS) following each IPI were recorded and used as a biomarker to evaluate neuronal reactions to each pulse. A linear mapping model was established to estimate the varied APS amplitudes by the two preceding IPIs. Secondly, the mapping model was used to derive an algorithm for designing an IPI sequence that would be applied for generating a desired neuronal reaction pre-defined by a particular APS distribution. Finally, examples of stimulations with different IPI sequences designed by the algorithm were verified by rat experiments. The results showed that the designed IPI sequences were able to reproduce the desired APS responses of different distributions in the hippocampal stimulations. The novel algorithm of IPI design provides a potential way to obtain various stimulation effects for brain stimulation therapies.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Neuroscience

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3