Abstract
Post-hypoxic myoclonus (PHM) and Lance–Adams syndrome (LAS) are rare conditions following cardiopulmonary resuscitation. The aim of this study was to identify functional activity in the cerebral cortex after a hypoxic event and to investigate alterations that could be modulated by deep brain stimulation (DBS). A voxel-based subtraction analysis of serial positron emission tomography (PET) scans was performed in a 34-year-old woman with chronic medically refractory PHM that improved with bilateral globus pallidus internus (Gpi) DBS implanted three years after the hypoxic event. The patient required low-frequency stimulation to show myoclonus improvement. Using voxel-based statistical parametric mapping, we identified a decrease in glucose metabolism in the prefrontal lobe including the dorsolateral, orbito-, and inferior prefrontal cortex, which was suspected to be the origin of the myoclonus from postoperative PET/magnetic resonance imaging (MRI) after DBS. Based on the present study results, voxel-based subtraction of PET appears to be a useful approach for monitoring patients with PHM treated with DBS. Further investigation and continuous follow-up on the use of PET analysis and DBS treatment for patients with PHM are necessary to help understanding the pathophysiology of PHM, or LAS.
Funder
National Research Foundation of Korea
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献