Cortical Sources of Respiratory Mechanosensation, Laterality, and Emotion: An MEG Study

Author:

Chan Pei-Ying S.ORCID,Cheng Chia-HsiungORCID,Liu Chia-Yih,Davenport Paul W.

Abstract

Airway obstruction activates mechanoreceptors that project to the cerebral cortices in humans, as evidenced by scalp encephalography recordings of cortical neuronal activation, i.e., respiratory-related evoked potential (RREP). However, neural evidence of both high spatial and temporal resolution of occlusion-elicited cortical activation in healthy individuals is lacking. In the present study, we tested our hypothesis that inspiratory mechanical stimuli elicit neural activation in cortical structures that can be recorded using magnetoencephalography (MEG). We further examined the relationship between depression and respiratory symptoms and hemispheric dominance in terms of emotional states. A total of 14 healthy nonsmoking participants completed a respiratory symptom questionnaire and a depression symptom questionnaire, followed by MEG and RREP recordings of inspiratory occlusion. Transient inspiratory occlusion of 300 ms was provided randomly every 2 to 4 breaths, and approximately 80 occlusions were collected in every study participant. Participants were required to press a button for detection when they sensed occlusion. Respiratory-related evoked fields (RREFs) and RREP peaks were identified in terms of latencies and amplitudes in the right and left hemispheres. The Wilcoxon signed-rank test was further used to examine differences in peak amplitudes between the right and left hemispheres. Our results showed that inspiratory occlusion elicited RREF M1 peaks between 80 and 100 ms after triggering. Corresponding neuromagnetic responses peaked in the sensorimotor cortex, insular cortex, lateral frontal cortex, and middle frontal cortex. Overall, the RREF M1 peak amplitude in the right insula was significantly higher than that in the left insula (p = 0.038). The RREP data also showed a trend of higher N1 peak amplitudes in the right hemisphere compared to the left (p = 0.064, one-tailed). Subgroup analysis revealed that the laterality index of sensorimotor cortex activation was significantly different between higher- and lower-depressed individuals (−0.33 vs. −0.02, respectively; p = 0.028). For subjective ratings, a significant relationship was found between an individual’s depression level and their respiratory symptoms (Spearman’s rho = 0.54, p = 0.028, one-tailed). In summary, our results demonstrated that the inspiratory occlusion paradigm is feasible to elicit an RREF M1 peak with MEG. Our imaging results showed that cortical neurons were activated in the sensorimotor, frontal, middle temporal, and insular cortices for the M1 peak. Respiratory occlusion elicited higher cortical neuronal activation in the right insula compared to the left, with a higher tendency for right laterality in the sensorimotor cortex for higher-depressed rather than lower-depressed individuals. Higher levels of depression were associated with higher levels of respiratory symptoms. Future research with a larger sample size is recommended to investigate the role of emotion and laterality in cerebral neural processing of respiratory sensation.

Funder

Linkou Chang Gung Memorial Hospital

Ministry of Science & Technology, Taiwan

Publisher

MDPI AG

Subject

General Neuroscience

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3