Multimodal Approach to Predict Neurological Outcome after Cardiac Arrest: A Single-Center Experience

Author:

Peluso LorenzoORCID,Boisdenghien Thomas,Attanasio Laila,Annoni FilippoORCID,Mateus Sanabria Lili,Severgnini Paolo,Legros Benjamin,Gouvêa Bogossian Elisa,Vincent Jean-Louis,Creteur Jacques,Oddo MauroORCID,Gaspard Nicolas,Taccone Fabio Silvio

Abstract

Introduction: The aims of this study were to assess the concordance of different tools and to describe the accuracy of a multimodal approach to predict unfavorable neurological outcome (UO) in cardiac arrest patients. Methods: Retrospective study of adult (>18 years) cardiac arrest patients who underwent multimodal monitoring; UO was defined as cerebral performance category 3–5 at 3 months. Predictors of UO were neurological pupillary index (NPi) ≤ 2 at 24 h; highly malignant patterns on EEG (HMp) within 48 h; bilateral absence of N20 waves on somato-sensory evoked potentials; and neuron-specific enolase (NSE) > 75 μg/L. Time-dependent decisional tree (i.e., NPi on day 1; HMp on day 1–2; absent N20 on day 2–3; highest NSE) and classification and regression tree (CART) analysis were used to assess the prediction of UO. Results: Of 137 patients, 104 (73%) had UO. Abnormal NPi, HMp on day 1 or 2, the bilateral absence of N20 or NSE >75 mcg/L had a specificity of 100% to predict UO. The presence of abnormal NPi was highly concordant with HMp and high NSE, and absence of N20 or high NSE with HMp. However, HMp had weak to moderate concordance with other predictors. The time-dependent decisional tree approach identified 73/103 patients (70%) with UO, showing a sensitivity of 71% and a specificity of 100%. Using the CART approach, HMp on EEG was the only variable significantly associated with UO. Conclusions: This study suggests that patients with UO had often at least two predictors of UO, except for HMp. A multimodal time-dependent approach may be helpful in the prediction of UO after CA. EEG should be included in all multimodal prognostic models.

Publisher

MDPI AG

Subject

General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3