Anatomical Features of the Deep Cervical Lymphatic System and Intrajugular Lymphatic Vessels in Humans

Author:

Yağmurlu KaanORCID,Sokolowski Jennifer D.,Çırak Musa,Urgun Kamran,Soldozy Sauson,Mut MelikeORCID,Shaffrey Mark E.,Tvrdik PetrORCID,Kalani M. Yashar S.

Abstract

Background: Studies in rodents have re-kindled interest in the study of lymphatics in the central nervous system. Animal studies have demonstrated that there is a connection between the subarachnoid space and deep cervical lymph nodes (DCLNs) through dural lymphatic vessels located in the skull base and the parasagittal area. Objective: To describe the connection of the DCLNs and lymphatic tributaries with the intracranial space through the jugular foramen, and to address the anatomical features and variations of the DCLNs and associated lymphatic channels in the neck. Methods: Twelve formalin-fixed human head and neck specimens were studied. Samples from the dura of the wall of the jugular foramen were obtained from two fresh human cadavers during rapid autopsy. The samples were immunostained with podoplanin and CD45 to highlight lymphatic channels and immune cells, respectively. Results: The mean number of nodes for DCLNs was 6.91 ± 0.58 on both sides. The mean node length was 10.1 ± 5.13 mm, the mean width was 7.03 ± 1.9 mm, and the mean thickness was 4 ± 1.04 mm. Immunohistochemical staining from rapid autopsy samples demonstrated that lymphatic vessels pass from the intracranial compartment into the neck through the meninges at the jugular foramen, through tributaries that can be called intrajugular lymphatic vessels. Conclusions: The anatomical features of the DCLNs and their connections with intracranial lymphatic structures through the jugular foramen represent an important possible route for the spread of cancers to and from the central nervous system; therefore, it is essential to have an in-depth understanding of the anatomy of these lymphatic structures and their variations.

Publisher

MDPI AG

Subject

General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3