Non-Specific Low Back Pain: An Inductive Exploratory Analysis through Factor Analysis and Deep Learning for Better Clustering

Author:

Robinault Lucien1,Niazi Imran Khan123ORCID,Kumari Nitika1ORCID,Amjad Imran14ORCID,Menard Vincent5,Haavik Heidi1ORCID

Affiliation:

1. Centre for Chiropractic Research, New Zealand College of Chiropractic, Auckland 1060, New Zealand

2. Faculty of Health and Environmental Sciences, Health and Rehabilitation Research Institute, AUT University, Auckland 1010, New Zealand

3. Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark

4. Faculty of Rehabilitation and Allied Health Sciences and Department of Biomedical Engineering, Riphah International University, Islamabad 46000, Pakistan

5. M2S Laboratory, ENS Rennes, University of Rennes 2, 35065 Rennes, France

Abstract

Non-specific low back pain (NSLBP) is a significant and pervasive public health issue in contemporary society. Despite the widespread prevalence of NSLBP, our understanding of its underlying causes, as well as our capacity to provide effective treatments, remains limited due to the high diversity in the population that does not respond to generic treatments. Clustering the NSLBP population based on shared characteristics offers a potential solution for developing personalized interventions. However, the complexity of NSLBP and the reliance on subjective categorical data in previous attempts present challenges in achieving reliable and clinically meaningful clusters. This study aims to explore the influence and importance of objective, continuous variables related to NSLBP and how to use these variables effectively to facilitate the clustering of NSLBP patients into meaningful subgroups. Data were acquired from 46 subjects who performed six simple movement tasks (back extension, back flexion, lateral trunk flexion right, lateral trunk flexion left, trunk rotation right, and trunk rotation left) at two different speeds (maximum and preferred). High-density electromyography (HD EMG) data from the lower back region were acquired, jointly with motion capture data, using passive reflective markers on the subject’s body and clusters of markers on the subject’s spine. An exploratory analysis was conducted using a deep neural network and factor analysis. Based on selected variables, various models were trained to classify individuals as healthy or having NSLBP in order to assess the importance of different variables. The models were trained using different subsets of data, including all variables, only anthropometric data (e.g., age, BMI, height, weight, and sex), only biomechanical data (e.g., shoulder and lower back movement), only neuromuscular data (e.g., HD EMG activity), or only balance-related data. The models achieved high accuracy in categorizing individuals as healthy or having NSLBP (full model: 93.30%, anthropometric model: 94.40%, biomechanical model: 84.47%, neuromuscular model: 88.07%, and balance model: 74.73%). Factor analysis revealed that individuals with NSLBP exhibited different movement patterns to healthy individuals, characterized by slower and more rigid movements. Anthropometric variables (age, sex, and BMI) were significantly correlated with NSLBP components. In conclusion, different data types, such as body measurements, movement patterns, and neuromuscular activity, can provide valuable information for identifying individuals with NSLBP. To gain a comprehensive understanding of NSLBP, it is crucial to investigate the main domains influencing its prognosis as a cohesive unit rather than studying them in isolation. Simplifying the conditions for acquiring dynamic data is recommended to reduce data complexity, and using back flexion and trunk rotation as effective options should be further explored.

Funder

NCMIC Foundation

French Government

Publisher

MDPI AG

Subject

General Neuroscience

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3