Abstract
Prevalence rates for mild cognitive impairment in Parkinson’s disease (PD-MCI) remain variable, obscuring the diagnosis’ predictive utility of greater dementia risk. A primary factor of this variability is inconsistent operationalization of normative cutoffs for cognitive impairment. We aimed to determine which cutoff was optimal for classifying individuals as PD-MCI by comparing classifications against data-driven PD cognitive phenotypes. Participants with idiopathic PD (n = 494; mean age 64.7 ± 9) completed comprehensive neuropsychological testing. Cluster analyses (K-means, Hierarchical) identified cognitive phenotypes using domain-specific composites. PD-MCI criteria were assessed using separate cutoffs (−1, −1.5, −2 SD) on ≥2 tests in a domain. Cutoffs were compared using PD-MCI prevalence rates, MCI subtype frequencies (single/multi-domain, executive function (EF)/non-EF impairment), and validity against the cluster-derived cognitive phenotypes (using chi-square tests/binary logistic regressions). Cluster analyses resulted in similar three-cluster solutions: Cognitively Average (n = 154), Low EF (n = 227), and Prominent EF/Memory Impairment (n = 113). The −1.5 SD cutoff produced the best model of cluster membership (PD-MCI classification accuracy = 87.9%) and resulted in the best alignment between PD-MCI classification and the empirical cognitive profile containing impairments associated with greater dementia risk. Similar to previous Alzheimer’s work, these findings highlight the utility of comparing empirical and actuarial approaches to establish concurrent validity of cognitive impairment in PD.
Funder
National Institute of Neurological Disorders and Stroke
National Institute on Aging
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献