Emergence of the Affect from the Variation in the Whole-Brain Flow of Information

Author:

Keshmiri SoheilORCID,Shiomi Masahiro,Ishiguro Hiroshi

Abstract

Over the past few decades, the quest for discovering the brain substrates of the affect to understand the underlying neural basis of the human’s emotions has resulted in substantial and yet contrasting results. Whereas some point at distinct and independent brain systems for the Positive and Negative affects, others propose the presence of flexible brain regions. In this respect, there are two factors that are common among these previous studies. First, they all focused on the change in brain activation, thereby neglecting the findings that indicate that the stimuli with equivalent sensory and behavioral processing demands may not necessarily result in differential brain activation. Second, they did not take into consideration the brain regional interactivity and the findings that identify that the signals from individual cortical neurons are shared across multiple areas and thus concurrently contribute to multiple functional pathways. To address these limitations, we performed Granger causal analysis on the electroencephalography (EEG) recordings of the human subjects who watched movie clips that elicited Negative, Neutral, and Positive affects. This allowed us to look beyond the brain regional activation in isolation to investigate whether the brain regional interactivity can provide further insights for understanding the neural substrates of the affect. Our results indicated that the differential affect states emerged from subtle variation in information flow of the brain cortical regions that were in both hemispheres. They also showed that these regions that were rather common between affect states than distinct to a specific affect were characterized with both short- as well as long-range information flow. This provided evidence for the presence of simultaneous integration and differentiation in the brain functioning that leads to the emergence of different affects. These results are in line with the findings on the presence of intrinsic large-scale interacting brain networks that underlie the production of psychological events. These findings can help advance our understanding of the neural basis of the human’s emotions by identifying the signatures of differential affect in subtle variation that occurs in the whole-brain cortical flow of information.

Funder

Japan Society for the Promotion of Science

Japan Science and Technology Agency

Publisher

MDPI AG

Subject

General Neuroscience

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Emotion recognition based on EEG feature maps through deep learning network;Engineering Science and Technology, an International Journal;2021-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3