Personality-Based Emotion Recognition Using EEG Signals with a CNN-LSTM Network

Author:

Hosseini Mohammad Saleh Khajeh1ORCID,Firoozabadi Seyed Mohammad2,Badie Kambiz3,Azadfallah Parviz4

Affiliation:

1. Department of Biomedical Engineering, Science and Research Branche, Islamic Azad University, Tehran 14778-93855, Iran

2. Department of Medical Physics, Faculty of Medicine, Tarbiat Modares University, Tehran 14117-13116, Iran

3. Content & E-Services Research Group, IT Research Faculty, ICT Research Institute, Tehran 14399-55471, Iran

4. Department of Psychology, Faculty of Humanities, Tarbiat Modares University, Tehran 14117-13116, Iran

Abstract

The accurate detection of emotions has significant implications in healthcare, psychology, and human–computer interaction. Integrating personality information into emotion recognition can enhance its utility in various applications. The present study introduces a novel deep learning approach to emotion recognition, which utilizes electroencephalography (EEG) signals and the Big Five personality traits. The study recruited 60 participants and recorded their EEG data while they viewed unique sequence stimuli designed to effectively capture the dynamic nature of human emotions and personality traits. A pre-trained convolutional neural network (CNN) was used to extract emotion-related features from the raw EEG data. Additionally, a long short-term memory (LSTM) network was used to extract features related to the Big Five personality traits. The network was able to accurately predict personality traits from EEG data. The extracted features were subsequently used in a novel network to predict emotional states within the arousal and valence dimensions. The experimental results showed that the proposed classifier outperformed common classifiers, with a high accuracy of 93.97%. The findings suggest that incorporating personality traits as features in the designed network, for emotion recognition, leads to higher accuracy, highlighting the significance of examining these traits in the analysis of emotions.

Publisher

MDPI AG

Subject

General Neuroscience

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3