Korean Pines Demonstrate Cold Resilience through Non-Structural Carbohydrate Concentrations despite Light Deprivation during the Growing Season

Author:

Li Bei1,Ma Xiao1,Saha Sudipta1,Wu Haibo123,Zhang Peng12ORCID,Shen Hailong13

Affiliation:

1. College of Forestry, Northeast Forestry University, Harbin 150040, China

2. State Forestry and Grassland Administration Engineering Technology Research Center of Korean Pine, Harbin 150040, China

3. State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China

Abstract

Carbon is the fundamental element of plant life. Non-structural carbohydrates (NSC), synthesized using carbon dioxide through photosynthesis by plants, are essential for their growth and survival, which are also affected by light and temperature. However, few studies have investigated the effects of light conditions, season, and needle age together on field plants’ carbohydrates. We measured total carbon, glucose, sucrose, fructose, and starch concentrations in current and 1-year-old needles of Korean pine (Pinus koraiensis Sieb. et Zucc) growing under two distinct light conditions (dense canopy and full light) from early summer to cold winter. Total carbon, glucose, fructose, SS (soluble sugar, sucrose + glucose + fructose), NSC (soluble sugar + starch), starch, and SS/NSC all significantly (p < 0.05) related to the DOY (day of the year, 2021). Total carbon reached the maximum in September when the fresh needles were mature. Glucose, NSC, SS, and SS/NSC reached the maximum at the last sampling time, which provided protection for the cells in cold winter. The season showed a bigger impact on total carbon and NSC (all parameters except total carbon) than light and needle age. Two different-aged needles under two light conditions all had similar patterns of variation in total carbon and NSC, but twigs showed a more significant (p < 0.05) difference in NSC concentrations between two light conditions on 25 October (DOY 249). Needles of Korean pines stored soluble sugars (mainly glucose) and consumed starch in winter. Moreover, we found that needles had more glucose, while twigs had more sucrose, which may be a result of their different functions and may be helpful for future spring growth. Although lacking light during the growing season, understory Korean pines still had enough cold tolerance, similar to full-light ones, which indicated that low light during the growing season has little effect on cold tolerance.

Funder

National Key Research and Development Program of China

National Nature Science Foundation of China

Fundamental Research Funds for the Central Universities

Heilongjiang Touyan Innovation Team Program

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3