Author:
Cui Haohao,Zhang Guanghui,Wang Qian,Wang Jinzhe,Liu Min,Yan Mingjiang
Abstract
The natural oases in the plain area of the northwest inland basin strongly depend on the groundwater depth. With the overexploitation and utilization of groundwater, natural oases are faced with the problems of serious degradation and rehabilitation. How to evaluate the degree of the degeneration crisis of groundwater ecological function has become one of the key scientific and technological problems to be solved. In this paper, the Shiyang River basin of Gansu Province was selected as a typical research area. The remote sensing interpretation, groundwater–soil ecology comprehensive investigation, and groundwater in situ monitoring were adopted to carry out the research. Based on the correlation analysis method of natural ecology and groundwater, the interactive relationship between the natural ecological environment and groundwater depth in different ecological types of the region were studied: (1) under the arid climate condition in northwest China, the relationships between the ecological situation and the groundwater depth in different ecological types of the region were obviously different, and as a result, the optimal or limit ecological water level of groundwater in different ecological types was also different; (2) in the natural wetland area, the suitable ecological water level of groundwater was between 0.5 m to 1.5 m, and the limit ecological water level was 8.0 m; in the natural vegetation area, the suitable ecological water level was between 3.0 m to 5.0 m, and the limit ecological water level was 10.0 m; and in the farmland area, the suitable ecological water level was between 2.0 m to 5.0 m, and the limit ecological water level was 2.0 m; (3) in order to effectively protect the natural ecology in different ecological types, a five-level early warning and control index system should be established for the ecological function degeneration crisis of groundwater. It may be beneficial to promote restoration and protection of the groundwater ecological function and natural ecology in the inland area of northwest China.
Funder
National Key R&D Program of China, National Natural Science Foundation of China, National Special Geological Survey Project
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Reference62 articles.
1. Isotopic approaches to identify groundwater dependent terrestrial vegetation: Progress, challenges, and prospects for future research;Sun;Bull. Geol. Sci. Technol.,2020
2. Groundwater-dependent ecosystems: the where, what and why of GDEs
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献