Impacts of Climate Change and Non-Point-Source Pollution on Water Quality and Algal Blooms in the Shoalhaven River Estuary, NSW, Australia

Author:

Wan Liu,Wang Xiao Hua,Peirson William

Abstract

This study quantifies some of the potential impacts of climate change and nutrient pollution to identify the most important factors on water quality changes and algal blooms in the study region. Three variables, air temperature and streamflow, representing climate change, and nutrient runoff, were varied in eight hypothetical scenarios to determine their impact on water quality and algal blooms by the calibrated and validated water quality model QUAL2K. Water quality was assessed by the concentrations of dissolved oxygen, total nitrogen, and phosphorus. Algal blooms were identified by phytoplankton concentration. An increase in air temperature of up to 2 °C resulted in an average increase of 3% in water temperature and 4.79% in phytoplankton concentration, and an average decrease of 0.48% in dissolved-oxygen concentration. Projected decreases in streamflow not only made the above phenomenon more significant but also significantly increased the concentration of total nitrogen, total phosphorus, and phytoplankton with the same pollution inputs. Under climate change, the biggest cause of concern for estuarine water quality is reduced streamflow due to decreases in rainfall. Water quality improvement is possible by regulating the concentration of non-point-source pollution discharge. By reducing nutrient runoff, the total nitrogen and phosphorus concentrations were also reduced, resulting in a significant increase in the dissolved oxygen concentration. This study highlights the most significant factors for managing water quality in estuaries subject to climate change.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3