CSI Feedback Model Based on Multi-Source Characterization in FDD Systems

Author:

Pan Fei12,Zhao Xiaoyu12ORCID,Zhang Boda12,Xiang Pengjun12,Hu Mengdie12,Gao Xuesong3

Affiliation:

1. College of Information Engineering, Sichuan Agricultural University, Ya’an 625014, China

2. Ya’an Digital Agricultural Engineering Technology Research Center, Ya’an 625014, China

3. College of Resources, Sichuan Agricultural University, Chengdu 625099, China

Abstract

In wireless communication, to fully utilize the spectrum and energy efficiency of the system, it is necessary to obtain the channel state information (CSI) of the link. However, in Frequency Division Duplexing (FDD) systems, CSI feedback wastes part of the spectrum resources. In order to save spectrum resources, the CSI needs to be compressed. However, many current deep-learning algorithms have complex structures and a large number of model parameters. When the computational and storage resources are limited, the large number of model parameters will decrease the accuracy of CSI feedback, which cannot meet the application requirements. In this paper, we propose a neural network-based CSI feedback model, Mix_Multi_TransNet, which considers both the spatial characteristics and temporal sequence of the channel, aiming to provide higher feedback accuracy while reducing the number of model parameters. Through experiments, it is found that Mix_Multi_TransNet achieves higher accuracy than the traditional CSI feedback network in both indoor and outdoor scenes. In the indoor scene, the NMSE gains of Mix_Multi_TransNet are 4.06 dB, 4.92 dB, 4.82 dB, and 6.47 dB for compression ratio η = 1/8, 1/16, 1/32, 1/64, respectively. In the outdoor scene, the NMSE gains of Mix_Multi_TransNet are 3.63 dB, 6.24 dB, 4.71 dB, 4.60 dB, and 2.93 dB for compression ratio η = 1/4, 1/8, 1/16, 1/32, 1/64, respectively.

Funder

Ministry of Science and Technology of China, National Key Research and Development Plan

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3