Affiliation:
1. College of Information Engineering, Sichuan Agricultural University, Ya’an 625014, China
2. Ya’an Digital Agricultural Engineering Technology Research Center, Ya’an 625014, China
3. College of Resources, Sichuan Agricultural University, Chengdu 625099, China
Abstract
In wireless communication, to fully utilize the spectrum and energy efficiency of the system, it is necessary to obtain the channel state information (CSI) of the link. However, in Frequency Division Duplexing (FDD) systems, CSI feedback wastes part of the spectrum resources. In order to save spectrum resources, the CSI needs to be compressed. However, many current deep-learning algorithms have complex structures and a large number of model parameters. When the computational and storage resources are limited, the large number of model parameters will decrease the accuracy of CSI feedback, which cannot meet the application requirements. In this paper, we propose a neural network-based CSI feedback model, Mix_Multi_TransNet, which considers both the spatial characteristics and temporal sequence of the channel, aiming to provide higher feedback accuracy while reducing the number of model parameters. Through experiments, it is found that Mix_Multi_TransNet achieves higher accuracy than the traditional CSI feedback network in both indoor and outdoor scenes. In the indoor scene, the NMSE gains of Mix_Multi_TransNet are 4.06 dB, 4.92 dB, 4.82 dB, and 6.47 dB for compression ratio η = 1/8, 1/16, 1/32, 1/64, respectively. In the outdoor scene, the NMSE gains of Mix_Multi_TransNet are 3.63 dB, 6.24 dB, 4.71 dB, 4.60 dB, and 2.93 dB for compression ratio η = 1/4, 1/8, 1/16, 1/32, 1/64, respectively.
Funder
Ministry of Science and Technology of China, National Key Research and Development Plan
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献