Optimization of a Tree Pit as a Blue–Green Infrastructure Object

Author:

Novak Lukas1,Kabelkova Ivana1,Hora David2,Stransky David1

Affiliation:

1. Faculty of Civil Engineering, Czech Technical University in Prague, Thakurova 7, 166 29 Prague, Czech Republic

2. Treewalker Ltd., Bystra Nad Jizerou 1, 513 01 Semily, Czech Republic

Abstract

Trees in dense urban environments are often planted in bioretention cells with an underlying trench (BC-T) providing both stormwater pretreatment and storage. The BC-T design is based on a water balance; however, some input data (tree water uptake and water-holding capacities of soil filter and trench substrate) are difficult to obtain. The goals of this paper were (i) to study the sensitivity of such data in the BC-T design (i.e., their effect on the size of the drained area which may be connected to the tree pit), and (ii) to recommend a possible simplification of the water balance for engineering practice. Global sensitivity analysis was performed for the setup of a BC-T used in Prague, Czech Republic, assuming three different trench exfiltration rates. The most sensitive variable affecting the size of the drained area is the available water-holding capacity in the trench. The simplification of the water balance is highly dependent on exfiltration conditions. At high exfiltration rates (18 mm·h−1 and more) or for a trench with an underdrain, the water-holding capacity in the soil filter and the tree water uptake can be omitted; whereas, at low trench exfiltration rates (1.8 mm·h−1, without an underdrain), both the water-holding capacity of the trench substrate and the potential tree water uptake have a significant influence and cannot be omitted.

Funder

Czech Technical University in Prague

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3