Utilization of Waste Straw Biomass in Suspension Magnetization Roasting of Refractory Iron Ore: Iron Recovery, Gas Analysis and Roasted Product Characterization

Author:

Cao Yue12,Sun Yongsheng12,Gao Peng12,Li Wenbo12ORCID

Affiliation:

1. School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China

2. National-Local Joint Engineering Research Center of High-Efficient Exploitation Technology for Refractory Iron Ore Resources, Shenyang 110819, China

Abstract

The straw-type biomass, as a green and alternative reductant for the suspension magnetization roasting (SMR) of iron ores, is proposed. The roasted products are investigated at a roasting temperature of 750 °C, the roasting time of 7.5 min and the biomass dose of 25%. The iron phase results indicate that hematite ores were reduced to magnetite by the biomass, and the magnetization transformation increased from 0.64 A·m2·g−1 to 36.93 A·m2·g−1. The iron ore microstructure evolutions of holes and fissures are detected by SEM-EDS. The biomass pyrolyzed to form CO2, CO, CH4, H2O, H2, C=O, benzene skeleton, C-Hand C-O compounds at 200–450 °C, while the mass loss of the magnetization roasting process occurred at 450–750 °C by using TG-FTIR. The GC/MS results showed that the organic gases preferred to produce the O-heterocycles at 329 °C while the hydrocarbons were dominant at the high temperature of 820 °C for the hematite ore and biomass mixture. The gas composition analysis explained that the reducing gaseous products (CO, CH4 and H2) were used as a reductant and consumed obviously by hematite ore in the SMR process. The innovative utilization of biomass waste was effective for iron recovery of hematite ore and contributes to the reduction of greenhouse gases and the protection of the environment.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3