Short- and Medium-Term Electricity Consumption Forecasting Using Prophet and GRU

Author:

Son Namrye1ORCID,Shin Yoonjeong2

Affiliation:

1. Software Centered University Project Group, Chonnam National University, 300 Yongbong-dong, Buk-gu, Gwangju 61186, Republic of Korea

2. JLG Corporation, 93 Hyou-ro, Nam-gu, Gwangju 61756, Republic of Korea

Abstract

Electricity consumption forecasting plays a crucial role in improving energy efficiency, ensuring stable power supply, reducing energy costs, optimizing facility management, and promoting environmental conservation. Accurate predictions help optimize energy system operations, reduce energy wastage, cut costs, and decrease carbon emissions. Consequently, the research on electricity consumption forecasting algorithms is thriving. However, to overcome challenges like data imbalances, data quality issues, seasonal variations, and event handling, recent forecasting models employ various approaches, including probability and statistics, machine learning, and deep learning. This study proposes a short- and medium-term electricity consumption prediction algorithm by combining the GRU model suitable for long-term forecasting and the Prophet model suitable for seasonality and event handling. (1) The preprocessed data propose the Prophet model in the first step for seasonality and event handling prediction. (2) In the second step, seven multivariate data are experimented with using GRU. Specifically, the seven multivariate data consist of six meteorological data and the residuals between the predicted data from the proposed Prophet model in Step 1 and the observed data. These are utilized to predict electricity consumption at 15 min intervals. (3) Electricity consumption is predicted for short-term (2 days and 7 days) and medium-term (15 days and 30 days) scenarios. The proposed approach outperforms both the Prophet and GRU models, reducing prediction errors and offering valuable insights into electricity consumption patterns.

Funder

MSIT (Ministry of Science and ICT), Korea

IITP

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3