Advancing Sustainability: Effective Strategies for Carbon Footprint Reduction in Seaports across the Colombian Caribbean

Author:

Acuña Liliana Centanaro1,Caceres Esteban Ochoa1,Campo Brayan Caballero1,Bortoluzzi Edson Campanhola2,Neckel Alcindo3ORCID,Moreno-Ríos Andrea Liliana1ORCID,Dal Moro Leila3,Oliveira Marcos L. S.14ORCID,de Vargas Mores Giana3ORCID,Ramos Claudete Gindri1ORCID

Affiliation:

1. Department of Civil and Environmental Engineering, Universidad de la Costa, Calle 58 #55-66, Atlántico, Barranquilla 080002, Colombia

2. Laboratory of Land Use and Natural Resources, University of Passo Fundo, Passo Fundo 99052-900, RS, Brazil

3. ATITUS Educação, Passo Fundo 99070-220, RS, Brazil

4. Santa Catarina Research and Innovation Support Foundation (Fapesc), Florianópolis 88030-902, SC, Brazil

Abstract

Colombian port terminals in the Caribbean are being called upon to increase the sustainability of their operations to better fit with the environmental dynamics of their locations. Within this context, the Palermo Sociedad Portuaria (PSP) has taken a proactive stance in identifying the factors contributing to its CO2 emissions. This study evaluated the CO2 emissions of the PSP in 2019 and 2020 and, through the implementation of sustainable practices (rock dust spreading, composting and reducing the burning of fossil fuels), examined the mitigation of the port’s carbon footprint (CF) in the year 2022. Based on collaborative management results and efforts, a set of viable mitigation strategies adapted to port operations was formulated. Viability was assessed through monitoring of the practical implementations encompassing initiatives such as fuel reduction, waste composting and the application of rock dust. The introduction of the CARE system in the operational equipment led to a reduction in fuel consumption over five periods—amounting to an overall emission decrease of 1629 metric tons of CO2 equivalent (ton CO2 eq). Meanwhile, the strategic composting of waste generated by port activities (including organic waste, hand towels, coffee grounds and landscaping waste) resulted in the potential reduction of 2 metric tons of CO2 annually. The application of rock dust (10 kg m−2) in the available green spaces within the operational areas contributed to a decrease of 0.00080543 ton CO2 eq over 45 days. The implementation of these three key measures over the course of a year has the potential to prevent the release of 37 ton CO2 eq, signifying a 2% decrease in overall CF when compared to the base year of 2020. This investigation was rooted in the current operational reality of the port terminal and its correlated activities. The strategies deployed underscore the feasibility of low-cost solutions that can be emulated across port terminals in pursuit of the holistic aspirations encapsulated in the concepts of a “green port” and a “smart port”.

Funder

National Council for Scientific and Technological Development

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3