A Subsurface Horizontal Constructed Wetland Design Approach for Wastewater Treatment: Application in Ar Riyadh, Saudi Arabia

Author:

Gabr Mohamed Elsayed1ORCID,El-Rawy Mustafa234ORCID,Al-Arifi Nassir4,Zijl Wouter5ORCID,Abdalla Fathy6ORCID

Affiliation:

1. Civil Engineering Department, Higher Institute for Engineering and Technology, Ministry of High Education, New Damietta 34517, Egypt

2. Civil Engineering Department, Faculty of Engineering, Minia University, Minia 61111, Egypt

3. Civil Engineering Department, College of Engineering, Shaqra University, Dawadmi 11911, Saudi Arabia

4. Chair of Natural Hazards and Mineral Resources, Geology and Geophysics Department, King Saud University, Riyadh 11451, Saudi Arabia

5. Department of Hydrology and Hydraulic Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium

6. Deanship of Scientific Research, King Saud University, Riyadh 11451, Saudi Arabia

Abstract

In this study, a decentralized new sewage water treatment system is suggested and designed in Ar Riyadh, Saudi Arabia, to safeguard the environment and reuse treated water for irrigation purposes. The system consists of a primary treatment (septic tank), a subsurface horizontal flow constructed wetland (HSSF-CW), and a storage ground tank. The research methodology employed in this study is (i) to define the wastewater characteristics, where air temperature in winter is 18.6 °C, the wastewater flow per person (q) is 150 L/d, demonstrating an inlet design discharge of 300 m3/d, the influent pollutant concentrations for biological oxygen demand (BOD), total suspended solids (TSS), chemical oxygen demand (COD), total nitrogen (TN), total phosphorus (TP), and fecal coliforms (FC) are 350, 1000, 700, 50, 12 mg/L, and 106 CFU/100 mL, respectively; (ii) to design the septic tank based on a retention time of two days and a surfacing load rate of 1.5 m/d; (iii) the P-k-C* model was used to determine the HSSF-CW surface area based on reed beds of Phragmites australis (common reed) and papyrus plants, where the removal rate was constant at 20 °C for BOD, TP, and FC in the effluent concentrations not exceeding 20 mg/L, 3.0 mg/L, and 2000 CFU/100 mL in order to satisfy Saudi Arabia’s wastewater reuse requirements; and (iv) to design the clean water tank for a hydraulic retention time of 10 h. The results demonstrate that the removing pollutants design area is 1872 m2 divided into nine cells, each of width 8 m and length 26 m, with a hydraulic loading rate (LR) of 0.16 m/d and a hydraulic resident time (RT) of 1.1 d. The effluent pollutant concentrations for the BOD, FC, TN, and TP were 245 mg/L, 103 CFU/100 mL, 35, and 8.5 mg/L, respectively. The wastewater treatment system total removal efficiencies for BOD, TN, TP, and FC were estimated to be 91.8, 70, 57, and 98.5%, respectively. Design curves were developed to ease the design steps. The HSSF-CW is a green wastewater treatment technology that offers greatly decreased investment costs, and service particularly for small-scale applications up to 6000 persons.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3