Can Digital Finance Contribute to Agricultural Carbon Reduction? Evidence from China

Author:

Liao Yangjie1,Zhou Xiaokun1

Affiliation:

1. School of Public Policy and Administration, Chongqing University, Chongqing 400044, China

Abstract

The existing research covers digital finance’s carbon reduction impacts in industrial and urban settings, however, leaving a gap in understanding its effects in agriculture. This study addresses this gap by examining the relationship and mechanism between digital finance and agricultural carbon reduction. Two hypotheses are proposed to guide the study: (1) The development of digital finance could reduce agricultural carbon emissions; (2) The development of digital finance could significantly promote agricultural green innovation, empowering agricultural carbon emission reduction. By employing panel data spanning 31 provinces from 2011 to 2020, we empirically investigate the relationship between digital finance development and a reduction in agricultural carbon emissions. The results indicate that digital financial development significantly reduces agricultural carbon emissions. Mechanism analysis further elucidates the pivotal role of digital finance in facilitating agricultural green innovation, resulting in a decline in agricultural carbon emissions. Additionally, heterogeneity analysis reveals that the impact of digital finance on agricultural carbon emission reduction is particularly pronounced in regions with higher income levels and greater educational attainment. The study offers empirical evidence on the nexus between digital finance and agricultural carbon emissions, from a developing country perspective. It could provide innovative ideas and experiences from China for global agricultural low-carbon development practices.

Funder

National Social Science Foundation of China

Fundamental Research Funds for the Central Universities of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3