A Sustainable Superhydrophobic and Photothermal Coatings for Anti-Icing Application on Concrete with a Simple Method for CNTs/SiO2 Modification

Author:

Li Shuai1,Li Yanwei23,Tan Yiqiu14,Li Jilu1,Wang Di5ORCID,Yuan Dongdong6,Zhang Jianli23

Affiliation:

1. School of Transportation Science and Engineering, Harbin Institute of Technology, Harbin 150090, China

2. Hebei Provincial Communications Planning and Design Institute, Shijiazhuang 050090, China

3. Research and Development Center of Transport Industry of Technologies, Materials and Equipments of Highway Construction and Maintenance, Shijiazhuang 050090, China

4. State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China

5. Department of Civil Engineering, Aalto University, 02150 Espoo, Finland

6. School of Highway, Chang’an University, Xi’an 710064, China

Abstract

Ice formation on concrete surfaces significantly challenges productivity, economic growth, and safety in diverse industrial sectors. Superhydrophobic coatings represent an effective solution to delay ice formation, although their functionality deteriorates under repeated freeze–thaw cycles. To address this issue, carbon nanotubes (CNTs) are frequently employed due to their exceptional photothermal conversion and mechanical properties, which contribute to extending the sustainability of the superhydrophobic coatings. However, the chemical inertness of CNTs often necessitates complex reactions to modify their functionalization. In this study, we have invented a simple method involving the sequential growth of silica on the surface of CNTs and the hydrophobic modification of the silica surface to enhance CNT functionality. These CNTs/SiO2 functionalized nanoparticles were then incorporated into an epoxy resin using a simple spray technique, resulting in a superhydrophobic and photothermal coating on concrete. To fine-tune the coating’s properties, we explored the effects of varying the doping levels of the nanoparticles on the surface morphology, roughness, and wettability of the CNT/SiO2-EP coatings. The optimal level of hydrophobicity was achieved by doping the coatings with 300 mg of functionalized nanoparticles, yielding an impressive contact angle of 159.6°. The integration of functionalized nanoparticles into the epoxy matrix not only enhances hydrophobicity but also improves mechanical robustness and abrasion resistance by creating multiscale surface roughness. Additionally, the coating exhibits outstanding chemical stability even under extreme conditions. One of the most significant advantages of these coatings is their ability to extend the ice nucleation time significantly. This effect is primarily attributed to the superior superhydrophobicity of the nanoparticles and the remarkable photothermal conversion capability of the CNTs. Upon exposure to Xenon lamp radiation, the ice droplets rapidly melt, underscoring the impressive performance of these coatings in preventing ice formation.

Funder

National Natural Science Foundation of China joint fund for regional innovation and development

Department of Education of Anhui Province

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3