Abstract
Freshwater quality maintenance is essential for human use and ecological functions. To ensure this objective, governments establish programs for a continuous monitoring of the inland waters state. This could be possible with Sentinel-2 (S2) and Sentinel-3 (S3), two remote sensing satellites of the European Space Agency, equipped with spectral optical sensors. To determine optimal water quality algorithms applicable to their spectral bands, 36 algorithms were tested for different key variables (chlorophyll a (Chl_a), colored dissolved organic matter (CDOM), colored dissolved organic matter (TSS), phycocyanin (PC) and Secchi disk depth (SDD)). A database of 296 water-leaving reflectance spectra were used, as well as concomitant water quality measurements of Mediterranean reservoirs and lakes of Spain. Two equal data sets were used for calibration and validation. The best algorithms were recalculated using all database and used the following band relations: SDD, R560/R700; CDOM, R665/R490; PC, R705/R665 for S2 and R620, R665, R709 and R779 for S3, using a semi-analytical algorithm; R700 for TSS < 20 mg/L and R783/R492 (S2) or R779/R510 (S3) for TSS > 20 mg/L; and for Chl_a, the maximum (R443; R492)/R560 for Chl_a < 5 mg/m3 and R700/R665 for Chl_a > 5 mg/m3. A preliminary test with a satellite image in a well-known reservoir showed results consistent with the expected ranges and spatial patterns of the variables.
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献