Effect of Temperature on the Kinetics of Localized Plasticity Autowaves in Lüders Deformation

Author:

Danilov Vladimir I.1,Orlova Dina V.1,Gorbatenko Vadim V.1,Danilova Lidiya V.1

Affiliation:

1. Institute of Strength Physics and Materials Science, Siberian Branch, Russian Academy of Sciences, Tomsk 634055, Russia

Abstract

The paper analyzes the elastoplastic transition in Fe–0.025 wt. % C at a temperature of 296–503 K and strain rate of 6.67·10−6–3.33·10−3 s−1. The analysis shows that the lower yield stress increases by a power law with increasing the strain rate, and that its rate sensitivity decreases linearly with increasing the test temperature. At temperatures lower than 393 K, the rate sensitivity of the lower yield stress is normal, and at 393–503 K, it is zero. In the range 393–503 K, the kinetics of the Lüders bands is changed from steady to discrete, and the higher the strain rate, the higher the temperature of this transition. Using the available data on the dynamics of dislocations and diffusion of interstitial impurities in the test alloy, it is demonstrated that the kinetics of Lüders bands are controlled by the effect of dynamic strain aging. If the arrest time of mobile dislocations tw at barriers which are overcome via thermal activation is comparable with the precipitation time of interstitial atoms ta at these dislocations, the motion of a Lüders band is discrete, and the band represents an excitation wave of localized plasticity; its refractory period is determined by the time of dynamic strain aging. If ta >> tw, the band moves monotonically and represents a switching autowave. The results of the analysis suggest that the effect of serrated yielding at the lower temperature boundary of blue brittleness can be suppressed by increasing the strain rate. When the arrest time of dislocations tw decreases, the comparability of tw and ta is broken, and no excitation autowave is formed. The data reported in the paper can be used to develop warm rolling technologies for materials with a sharp elastoplastic transition.

Funder

RSF

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Reference42 articles.

1. Bell, F.G. (1973). The Experimental Foundations of Solid Mechanics, Springer.

2. Rabotnov, Y.N. (1977). Elements of Lineal Mechanics of Solids, Nauka. (In Russian).

3. Kelly, A., and Groves, G.W. (1970). Crystallography and Crystals Defects, Longman.

4. Cottrell, A.H. (1953). Dislocation and Plastic Flow in Crystals, Oxford University Press.

5. Messerschmidt, U. (2010). Dislocation Dynamics during Plastic Deformation, Springer.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3