Applications of Phase Field Methods in Modeling Fatigue Fracture and Performance Improvement Strategies: A Review

Author:

Cui Haitao12,Du Chenyu12,Zhang Hongjian12ORCID

Affiliation:

1. College of Energy & Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

2. Aero-Engine Thermal Environment and Structure Key Laboratory of Ministry of Industry and Information Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Abstract

Fatigue fracture simulation based on phase field methods is a promising numerical approach. As a typical continuum approach, phase field methods can naturally simulate complex fatigue fracture behavior. Moreover, the cracking is a natural result of the simulation without additional fracture criterion. This study first introduced the phase field fracture principle, then reviewed some recent advances in phase field methods for fatigue fracture modeling, and gave representative examples in macroscale, microscale, and multiscale structural simulations. In addition, some strategies to improve the performance of phase field models were summarized from different perspectives. The applications of phase field methods to fatigue failure demonstrate the ability to handle complex fracture behaviors under multiple loading forms and their interactions, and the methods have great potential for development. Finally, an outlook was made in four aspects: loading form, fatigue degradation criterion, coupled crystal plasticity, and performance improvement.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3