Strain-Induced Phase Transformation Modeling of QP980 Steel and Its Application to Complex Loading Paths

Author:

Lv Zhiqin12,Dai Enkai12,Guo Ning12,Yuan Panpan12,Liu Guoqiang12,Tang Bingtao12

Affiliation:

1. School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China

2. Shandong Institute of Mechanical Design and Research, Jinan 250103, China

Abstract

Quenching and partitioning (QP) steel has attracted much focus due to the effect of phase transformation induced plasticity (TRIP). However, the TRIP behavior makes it difficult to accurately predict the strain and stress distribution as well as the phase transformation behavior of QP steel. Scanning electron microscope (SEM) images of the QP980 microstructure were produced in this study, characterized by a combination of lath martensite, polygonal ferrite and retained austenite. The volume fraction evolution of retained austenite with equivalent plastic strain (EPS) of uniaxial tension was obtained by electron-backscatter diffraction. The phase transformation kinetics equations of QP980 were deduced based on the phase transformation model proposed by Olson and Cohen (simplified as O-C theory), considering the effects of strain rate, deformation temperature and stress state. A constitutive model on the dependence of the phase transformation was proposed to reveal the relation between metallographic characteristics and mechanical performance of QP980 steel during deformation. The User subroutine VUMAT in ABAQUS/Explicit was implemented to describe the volume fraction of retained austenite (VFRA) under different stress states. The established phase transformation and constitutive model were applied to three kinds of complex path loading tests. The variation in the retained austenite under complex strain paths was obtained and compared with the experimental results.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Taishan Industry Leading Talent Project

Innovation Team of Jinan

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3