Biofilm-Induced Corrosion Inhibition of Q235 Carbon Steel by Tenacibaculum mesophilum D-6 and Bacillus sp. Y-6

Author:

Ruan Xiaoxi12,Yang Linlin12,Wang Yan12,Dong Yizhe12,Xu Dake12,Zhang Mingxing12

Affiliation:

1. Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China

2. Electrobiomaterials Institute, Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang 110819, China

Abstract

The corrosion of carbon steel causes dramatic economic losses each year. Since conventional corrosion prevention approaches may cause pollution problems to the environment, ecofriendly and effective corrosion approaches are desired. Microbiologically influenced corrosion inhibition (MICI) has been reported as a sustainable corrosion prevention method. This work aims to evaluate the corrosion inhibition effect of two bacterial strains, Tenacibaculum mesophilum D-6 and Bacillus sp. Y-6 by choosing Q235 carbon steel as a model system. Scanning electron microscopy (SEM), confocal laser scanning microscopy (CLSM) and a series of electrochemical techniques were applied to study the corrosion prevention effect. The electrochemical and pitting results indicated that T. mesophilum D-6 displayed a better corrosion protection effect. T. mesophilum D-6 formed a denser and thicker biofilm on the Q235 surface than Bacillus sp. Y-6. The maximum thickness of the T. mesophilum D-6 biofilms was 11.6 ± 0.7 μm, which is about twice as thick than that of Bacillus sp. Y-6. The corrosion prevention mechanism was ascribed to the formation of biofilms as a barrier to block corrosive agents such as O2. This study provides a theoretical foundation for the application of biofilms as green and effective corrosion inhibitors for carbon steel.

Funder

National Natural Science Foundation of China

College Student Innovation and Entrepreneurship Training Program

Research Fund of State Key Laboratory for Marine Corrosion and Protection of Luoyang Ship Material Research Institute

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3