Process and Mechanism of Sealing 65 vol.% SiCp/ZL102 Composite and DM305 Electronic Glass with Borosilicate Glass

Author:

Zhou Da1,Cheng Dongfeng1,Hu Xiaoyu1,Niu Jitai123,Qiu Dechao1

Affiliation:

1. School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China

2. State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China

3. Henan Jingtai High-Novel Materials Ltd. of Science and Technology, Jiaozuo 454000, China

Abstract

SiC-particulate-reinforced aluminum matrix composites (SiCp/Al MMCs) are widely used in the aerospace field due to their high specific stiffness and strength, low thermal expansion coefficient, and good radiation resistance. In the process of application and promotion, there is a connection problem between the aluminum matrix composites and electronic glass. In this work, the lead-free SiO2-B2O3-Na2O glass filler was used to seal 65 vol.% SiCp/ZL102 composites and DM305 electronic glass in an atmospheric environment. The effects of the sealing temperature on the properties of the joints were studied by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). Additionally, the causes of defects and the fracture mechanisms of the joints were analyzed. The results showed that the glass filler and base material were connected through a dual mechanism of an Al, Na, Si, and O element diffusion reaction and a mechanical occlusion. At a sealing temperature of 540 °C and a holding time of 30 min, the joint interface was dense and crack-free. Meanwhile, the average shear strength reached 13.0 MPa, and the leakage rate of air tightness was 1 × 10−9 Pa·m3/s. The brittle fracture features were revealed by the step-like morphology of the fracture, which originated from the brazing seam and propagated into the pore. The crack gradually propagated into the base material on both sides as the fracture area expanded, ultimately resulting in a fracture.

Funder

National Natural Science Foundation of China

Science and Technology Project of Henan Province, China

Key Project of Science and Technology Research of Henan Provincial Department of Education

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3