The Effects of Cold Rolling and Annealing on the Microstructure Evolution of Ordered C-2000 Alloy during Metallic Wire Preparation

Author:

Yuan Liang1,Gou Faqiang1,Sun Deqiang1,Li Zhiqiang1,Xue Yunlong2

Affiliation:

1. College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China

2. School of Material Science & Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China

Abstract

When using well-designed multiple-stage heavy-drawn processes, i.e., cold rolling, drawing and cluster drawing to fabricate a metallic wire or fiber in steps, cold rolling and annealing are critical steps due to their effect on the initial microstructure before the heavy-drawn process. Understanding the relationship between microstructure evolution and cold rolling followed by annealing is required for smoothly implementing the heavy-drawn process. In this work, the evolution behavior in terms of the microstructure during cold rolling followed by annealing was investigated in a novel C-2000 alloy that is a promising candidate material for the fabrication of high-performance metallicwire. The investigation encompassed parameters including the grain size, grain boundaries, recrystallization texture, and short-range ordered (SRO) structure. Results show that the grain size distribution of the cold-rolledC-2000 alloy followed by annealing at 900 °C is quite uneven. The low-angle grain boundaries induced by cold rolling are more frequently transformed into the Σ3 twin boundaries during recrystallization. At the initial stage of annealing at 900 °C after cold rolling, the contents of different texture components are significantly different, but the differences tend to decrease with the extension of the annealing time. In addition, cold rolling destroys SRO domains formed during solid solution water quenching, and the destruction of SRO affects the precipitation of the long-range ordered phase during annealing. Incoherent Σ3ic with curved grain boundaries play an important role in the recrystallization of nucleation sites in the process of static recrystallization by nucleation–growth.

Funder

The Natural Science Foundation of Shaanxi Province

The National Natural Science Foundation of China

The State Key Laboratory of Solidification Processing in NWPU

The Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3