Investigation of Mechanical Properties and Wear Resistance of A2/B2 Type Medium-Entropy Alloy Matrix Reinforced with Tungsten Particles by In-Situ Reaction

Author:

Wu Mingyu1,Diao Guijiang1,Xu Zhen1,Sim Ruiken1ORCID,Chen Wengang2,Chen Daolun3ORCID,Li Dongyang1

Affiliation:

1. The Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 2H5, Canada

2. College of Mechanical & Transportation Engineering, Southwest Forest University, Kunming 650224, China

3. Department of Mechanical and Industrial Engineering, Toronto Metropolitan University, Toronto, ON M5B 2K3, Canada

Abstract

Microstructure, mechanical properties, wear resistance, corrosion and corrosive wear resistance of AlCrFeNiWx (x = 0, 0.1, 0.2, 0.3 and 0.4) medium-entropy alloys (MEAs) prepared by vacuum arc melting process were investigated. Results of the study show that the microstructure of as-cast AlCrFeNiWx alloys is composed of one disordered Fe-Cr rich BCC phase (A2) and one ordered NiAl-rich (B2) phase when x = 0 and 0.1; W particles appear when x ≥ 0.2. Hardness and strength of AlCrFeNi alloy are markedly increased by the W addition. The strengthening mechanisms include solid-solution strengthening, nano-sized precipitation strengthening and second phase strengthening. The excellent ductility of AlCrFeNi is retained with minor W addition (x ≤ 0.2) but it considerably declines as more W is added, resulting from the precipitation of excessive large-sized W particles. W addition improves the pitting resistance and passivation property of AlCrFeNi HEA in 3.5 wt. % NaCl solution. It is shown that AlCrFeNiW0.3 possesses the highest corrosion resistance, as reflected by the highest Ecorr and the lowest Icorr. Tungsten notably enhances the resistance of this HEA to wear and corrosive wear. AlCrFeNiW0.4 with the highest strength and hardness exhibits the lowest wear volume loss under both dry and corrosive wear conditions.

Funder

Natural Science and Engineering Research Council of Canada

Alberta Innovates

High-end Foreign Experts Introduction Project

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3