Microstructures and High Temperature Tensile Behaviours of Laser Powder Bed Fusion Fabricated Al-Mn-Sc Alloy

Author:

Yan Yuqing1,Lu Chengqi1,Chen Zhenyu1,Zhuo Yuhao1,Wang Chuanyang1,Jia Qingbo1

Affiliation:

1. School of Mechanical and Electrical Engineering, Soochow University, Suzhou 215131, China

Abstract

The introduction of Sc/Zr inoculates to aluminium (Al) alloys for laser powder bed fusion (LPBF) provides numerous benefits, including laser processability improvement, solidification microstructure control and mechanical property enhancement. Though great efforts have been put into tailoring the microstructure and room temperature mechanical properties via process parameter optimisations, the potential roles of Sc/Zr inoculate modified Al alloys for high-temperature applications were still underexplored. In this study, the microstructural stability and the elevated temperature tensile behaviours of LPBF-processed Al-Mn-Sc alloy were systematically evaluated. The alloy demonstrated high microstructural stability after both heat treatment and high-temperature tensile testing for up to 573 K. The applied tensile testing temperature and strain rate played significant influences on the elevated temperature tensile properties and deformation behaviours. Unusual intermediate temperature embrittlement (also known as ductility dip) and yield drop behaviours were observed under certain testing temperature and strain rate regimes, and the underlying deformation mechanisms were elucidated in detail. The present study is expected to shed light on future high-performance, high-temperature Al alloy development for the LPBF process.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

China Postdoctoral Science Foundation

Fundamental Research Program for Prospective Application of Suzhou City

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mechanical Alloying of Aluminium Alloys;Advances in Chemical and Materials Engineering;2024-02-27

2. Tensile creep mechanisms of Al-Mn-Sc alloy fabricated by additive manufacturing;Additive Manufacturing;2024-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3