Jetting Dynamics of Burning Gel Fuel Droplets

Author:

Sharma Janmejai,Miglani AnkurORCID,John Jerin,Nandagopalan Purushothaman,Shaikh Javed,Kankar Pavan KumarORCID

Abstract

Jetting in burning gel fuel droplets is an important process which, in addition to pure vaporization, enables the convective transport of unreacted fuel vapors from the droplet interior to the flame envelope. This aids in accelerating the fuel efflux and enhancing the mixing of the gas phase, which improves the droplet burn rates. In this study, Schlieren imaging was used to characterize different jetting dynamics that govern the combustion behavior of organic-gellant-laden ethanol gel fuel droplets. To initiate jetting, the gellant shell of the burning gel fuel droplet was subjected to either oscillatory bursting or isolated bursting, or both. However, irrespective of the jetting mode, the jets interacted with the flame envelope in one of three possible ways. Based on the velocity and the degree to which a jet disrupts the flame envelope, it is classified as either a flame distortion, a fire ball outside the flame or a pin hole jet (localized flame extinction), where the pin hole jets have the highest velocity (1000–1550 mm/s), while the flame distortion events have the lowest velocity (500–870 mm/s). Subsequently, the relative number of the three types of jetting events during the droplet lifetime was analyzed as a function of the type of organic gellant. It was demonstrated that the combustion behavior of gel fuels (hydroxypropyl methylcellulose: HPMC at 3 wt.%) that tend to form thin-weak-flexible shells is dominated by low-velocity flame distortion events, while the gel fuels (methylcellulose: MC at 9 wt.%) that facilitate the formation of thick-strong-rigid shells are governed by high-velocity fire ball and pin hole jets. Overall, this study provides critical insights into the jetting behavior and its characterization, which can help us to tune the droplet gasification and the gas phase mixing to achieve an effective combustion control strategy for gel fuels.

Publisher

MDPI AG

Subject

Polymers and Plastics,Organic Chemistry,Biomaterials,Bioengineering

Reference39 articles.

1. Advanced aviation fuels: A look ahead via a historical perspective;Maurice;Fuel,2001

2. Liquid fuels and propellants for aerospace propulsion: 1903–2003;Edwards;J. Propuls. Power,2003

3. The status of gel propellants in year 2000;Natan;Int. J. Energetic Mater. Chem. Propuls.,2002

4. Hodge, K., Crofoot, T., and Nelson, S. (1999, January 20–24). Gelled propellants for tactical missile applications. Proceedings of the 35th Joint Propulsion Conference and Exhibit, Los Angeles, CA, USA.

5. Ciezki, H.K., Naumann, K.W., and Weiser, V. (September, January 31). Status of gel propulsion in the year 2010 with a special view on the German activities. Proceedings of the Deutscher Luft-und Raumfahrtkongress 2010, Hamburg, Germany.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3