Chitosan Aerogel Particles as Nasal Drug Delivery Systems

Author:

Menshutina NataliaORCID,Majouga Alexander,Uvarova AnastasiaORCID,Lovskaya DariaORCID,Tsygankov Pavel,Mochalova MariaORCID,Abramova OlgaORCID,Ushakova Valeria,Morozova Anna,Silantyev Artemiy

Abstract

The nasal drug delivery route has distinct advantages, such as high bioavailability, a rapid therapeutic effect, non-invasiveness, and ease of administration. This article presents the results of a study of the processes for obtaining chitosan aerogel particles that are promising as nasal or inhalation drug delivery systems. Obtaining chitosan aerogel particles includes the following steps: the preparation of a chitosan solution, gelation, solvent replacement, and supercritical drying. Particles of chitosan gels were obtained by spraying and homogenization. The produced chitosan aerogel particles had specific surface areas of up to 254 m2/g, pore volumes of up to 1.53 cm3/g, and porosities of up to 99%. The aerodynamic diameters of the obtained chitosan aerogel particles were calculated, the values of which ranged from 13 to 59 µm. According to the calculation results, a CS1 sample was used as a matrix for obtaining the pharmaceutical composition “chitosan aerogel—clomipramine”. X-ray diffraction (XRD) analysis of the pharmaceutical composition determined the presence of clomipramine, predominantly in an amorphous form. Analysis of the high-performance liquid chromatography (HPLC) data showed that the mass loading of clomipramine was 35%. Experiments in vivo demonstrated the effectiveness of the pharmaceutical composition “chitosan aerogel—clomipramine” as carrier matrices for the targeted delivery of clomipramine by the “Nose-to-brain” mechanism of nasal administration. The maximum concentration of clomipramine in the frontal cortex and hippocampus was reached 30 min after administration.

Funder

Ministry of science and higher education of the Russian Federation

Publisher

MDPI AG

Subject

Polymers and Plastics,Organic Chemistry,Biomaterials,Bioengineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3