Kinetic Hydrate Inhibition of Natural Gels in Complex Sediment Environments

Author:

Wang JianlongORCID,Sun Jinsheng,Bian Hang,Wang Qibing,Feng Zhenbo,Lu Cheng,Ren Han,Cheng Rongchao,Wang Jintang,Wang Ren

Abstract

Natural gels are emerging as a hotspot of global research for their greenness, environmental-friendliness, and good hydrate inhibition performance. However, previous studies mostly performed experiments for simple pure water systems and the inhibition mechanism in the sediment environment remains unclear. Given this, the inhibition performance of xanthan gum and pectin on hydrate nucleation and growth in sediment environments was evaluated via hydrate formation inhibition tests, and the inhibition internal mechanisms were revealed via a comprehensive analysis integrating various methods. Furthermore, the influences of natural gels on sediment dispersion stability and low-temperature fluid rheology were investigated. Research showed that the sediments of gas hydrate reservoirs in the South China Sea are mainly composed of micro-nano quartz and clay minerals. Xanthan gum and pectin can effectively inhibit the hydrate formation via the joint effects of the binding, disturbing, and interlayer mass transfer suppression processes. Sediments promote hydrate nucleation and yet inhibit hydrate growth. The interaction of sediments with active groups of natural gels weakens the abilities of gels to inhibit hydrate nucleation and reduce hydrate formation. Nonetheless, sediments help gels to slow down hydrate formation. Our comprehensive analysis pointed out that pectin with a concentration of 0.5 wt% can effectively inhibit the hydrate nucleation and growth while improving the dispersion stability and low-temperature rheology of sediment-containing fluids.

Funder

National Natural Science Foundation of China

Engineering Research Center of Rock-Soil Drilling & Excavation and Protection, Ministry of Education

CNPC’s Major Science and Technology Projects

Scientific research and technology development project of CNPC

Publisher

MDPI AG

Subject

Polymers and Plastics,Organic Chemistry,Biomaterials,Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3