Abstract
An efficient auto-continuous globing process was developed with a self-built apparatus to synthesize pure silica aerogel microspheres (PSAMs) using sodium silicate as a precursor and water as a solvent. A hydrophobic silica aerogel microsphere (HSAM) was obtained by methyl grafting. A reinforced silica aerogel microsphere (RSAM) was prepared by polymer cross-linking on the framework of the silica gel. The pH value of the reaction system and the temperature of the coagulating bath were critical to form perfect SAMs with a diameter of 3.0 ± 0.2 mm. The grafted methyl groups are thermally stable up to 400 °C. Polymer cross-linking increased the strength significantly, owing to the polymer coating on the framework of silica aerogel. The pore volumes of HSAM (6.44 cm3/g) and RSAM (3.17 cm3/g) were much higher than their state-of-the-art counterparts. Their specific surface areas were also at a high level. The HSAM and RSAM showed high organic sorption capacities, i.e., 17.9 g/g of pump oil, 11.8 g/g of hexane, and 22.2 mg/g of 10 mg/L methyl orange. The novel preparation method was facile, cost-effective, safe, and eco-friendly, and the resulting SAM sorbents were exceptional in capacity, dynamics, regenerability, and stability.
Funder
Natural Science Foundation of Jiangsu Province, China
Postgraduate Research and Practice Innovation Program of Jiangsu Province
Subject
Polymers and Plastics,Organic Chemistry,Biomaterials,Bioengineering
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献