The Effect of Variations of Flow from Tributary Channel on the Flow Behavior in a T-Shape Confluence

Author:

Azma Aliasghar,Zhang Yongxiang

Abstract

Channel confluences are of the common structures in fluid transport channels. In this study, a series of numerical simulations were performed, utilizing a 3D code to investigate the reaction of the flow parameters and vortical structure to the variations in flow discharge and its Froude number from both main channel and tributary branch in a T-shape junction. The code was calibrated with the experimental data. Parameters, including the velocity, the turbulence energy, stream surface profile, head losses, and the transverse flow motions, were considered in different situations. It was concluded that increasing the ratio of discharge of flow from side-channel to the main channel (Q*) increased the area and power of the recirculation zone, as well as the width of separation plate downstream of the confluence, while it reduced the area of the stagnation zone (or the wake vortex) within the side-channel. It was also indicated that increasing the discharge ratio from side-channel resulted in an increase in the upstream water level in the main channels, which was dependent on the upstream discharge.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference23 articles.

1. Effects of open-channel geometry on flow pattern in a 90° junction;Mohammaduin;Iran. J. Sci. Tech. Trans. Civil Eng.,2015

2. Simulation of flow pattern at rectangular lateral intake with different dike and submerged vane scenarios

3. Flow characteristics at rectangular open-channel junctions;Taylor;Trans. ASCE,1944

4. AN INVESTIGATION OF FLOW BEHAVIOUR AT THE JUNCTION OF RECTANGULAR CHANNELS.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3