On the Injection of Sub/Inter-Harmonic Current Components for Active Anti-Islanding Purposes

Author:

Voglitsis Dionisis,Valsamas Fotis,Rigogiannis Nick,Papanikolaou NickORCID

Abstract

Active anti-islanding schemes that are based on the injection of harmonic currents, such as the measurement of the impedance at a specific frequency or similar techniques, have been proposed for anti-islanding protection in photovoltaic (PV) systems due to their low impact on inverter active power, their fast detection response in island, and reduced non-detection zone (NDZ). Integer multiples of the fundamental frequency as well as sub/inter-harmonics have both been used for the implementation of those schemes. Although utilization of sub/inter-harmonics present significant advantages, they also present significant limitations. This work investigates those limitations, particularly the ones that are caused by the parallel operation of multiple inverters. In addition, the distortion effect that is caused in the output current of the widely used PV microinverters with pseudo dc-link (PV Pdc-MICs) is discussed and thoroughly analyzed. It is concluded that when the injection is performed asynchronously (without communication among the inverters) sub/inter-harmonics are unsuitable for utilization under the parallel operation of multiple inverters. It is worth noting that a strategy is proposed in the current work that retains the effectiveness of the harmonic injection scheme under the injection of integer multiples of fundamental frequency. On the other hand, the distortion effect that is caused by the sub/inter-harmonics on PV Pdc-MICs output current, has been evaluated as insignificant when harmonics are used for anti-islanding purposes. Finally, the theoretical/mathematical outcomes of this work are supported by simulation and experimental results.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3