Optimum Phenological Phases for Deciduous Species Recognition: A Case Study on Quercus acutissima and Robinia pseudoacacia in Mount Tai

Author:

Liu Xiao,Wang Ling,Li LangpingORCID,Zhu Xicun,Chang Chunyan,Lan Hengxing

Abstract

Tree species recognition is important for remote–sensing mapping and dynamic monitoring of forest resource. However, the complex phenological cycle poses a challenge to remote–sensing recognition of deciduous tree species in mountainous areas, and the selection of temporal phase is particularly important to improve recognition accuracy. Multispectral images of Ziyuan–1 02C (ZY–1 02C) and Ziyuan–3 (ZY–3) at three phenological phases of spring, autumn and winter (12 May, 29 September and 7 December, recorded as T5–12, T9–29 and T12–7) are selected to optimize sensitive spectral indices. Support vector machine (SVM) and maximum likelihood model (MLE) are constructed to explore the optimum phase of recognizing on Quercus acutissima (O. acutissima ) and Robinia pseudoacacia (R. pseudoacacia) in Mount Tai. The results showed the average spectral reflection intensity of O. acutissima was higher than that of R. pseudoacacia Compared to other phenological periods, the most significant spectral differences between O. acutissima and R. pseudoacacia were found in the spring (12 May), which was identified as the optimum phenological phase. Band 4 is the most sensitive band in all the three phases for the tree species recognition. Moreover, the overall recognition accuracy of deciduous tree species on 12 May reached 89.25%, which was significantly higher than the other two phases. On 12 May, the recognition accuracies of SVM based on sensitive spectral indices of up to 93.59% for O. acutissima and 85.44% for R. pseudoacacia, were higher overall than that of the MLE. Sensitive spectral indices introduced were shown to significantly improve the recognition accuracy for tree species over a single sensitive band. The study is expected to facilitate the precise recognition and forestry management on Mount Tai.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Forestry

Reference36 articles.

1. Current situation investigation and analysis of medicinal plant resources in Mount Tai area;Su;Chin. Wild Plant Resour.,2018

2. Research on crop identification using multi-temporal NDVI HJ images;Huanxue;Remote Sens. Technol. Appl.,2015

3. Joint Processing of Landsat and ALOS-PALSAR Data for Forest Mapping and Monitoring

4. The method to estimate timber volume with GIS in forest resouree inventory;Zhou;J. Northeast For. Univ.,2000

5. Individual Urban Tree Species Classification Using Very High Spatial Resolution Airborne Multi-Spectral Imagery Using Longitudinal Profiles

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3