Stationary Energy Storage System for Fast EV Charging Stations: Simultaneous Sizing of Battery and Converter

Author:

Hussain AkhtarORCID,Bui Van-Hai,Baek Ju-Won,Kim Hak-ManORCID

Abstract

Optimal sizing of stationary energy storage systems (ESS) is required to reduce the peak load and increase the profit of fast charging stations. Sequential sizing of battery and converter or fixed-size converters are considered in most of the existing studies. However, sequential sizing or fixed-converter sizes may result in under or oversizing of ESS and thus fail to achieve the set targets, such as peak shaving and cost reduction. In order to address these issues, simultaneous sizing of battery and converter is proposed in this study. The proposed method has the ability to avoid the under or oversizing of ESS by considering the converter capacity and battery size as two independence decision variables. A mathematical problem is formulated by considering the stochastic return time of electrical vehicles (EVs), worst-case state of charge at return time, number of registered EVs, charging level of EVs, and other related parameters. The annualized cost of ESS is computed by considering the lifetime of ESS equipment and annual interest rates. The performance of the proposed method is compared with the existing sizing methods for ESS in fast-charging stations. In addition, sensitivity analysis is carried out to analyze the impact of different parameters on the size of the battery and the converter. Simulation results have proved that the proposed method is outperforming the existing sizing methods in terms of the total annual cost of the charging station and the amount of power buying during peak load intervals.

Funder

Korea Institute of Energy Technology Evaluation and Planning

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3