Abstract
In the article the computational fluid dynamics (CFD) simulation and calculated operational parameters of the single stage low-pressure rotary lobe expander compared with the values obtained from a different geometry simulation are presented. Low-pressure rotary lobe expanders are rotary engines that use a compressed gas to produce mechanical energy, which in turn can be converted into another form, i.e., electric energy. Currently, expanders are used in narrow areas, but have a large potential in the energy production from gases of low thermodynamic parameters. The first geometry model was designed on the basis of an industrial device and validated with the empirical data. Simulation of the second geometry was made based on a validated model in order to estimate the operational parameters of the device. The CFD model included the transient simulation of compressible fluid in the geometry changing over time and the rotors motion around two rotation axes. The numerical model was implemented in ANSYS CFX software. After obtaining simulation results in the form of parameters monitors for each time step, a number of calculations were performed using a written code analysing the CFD program output files. The article presents the calculation results and the geometries comparison in terms of work efficiency. The research indicated that the construction of the device on a small scale could cause a significant decrease in the aforementioned parameter, caused by medium leaks in the expander clearances.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献