Abstract
This paper describes modern research methods of the ignition and combustion processes of slurry fuel droplets. The experiments were carried out using a muffle furnace to ensure the conditions of radiation heating, the hot surface to reproduce the conditions of conductive heating, the high-temperature channel with convective heating, the chamber with the processes of soaring, i.e., a significant increase in the time of fuel residence in the combustion chamber. We identified the differences in combustion modes, threshold ignition temperatures, delay times and durations of combustion processes. We obtained the quantitative differences in the characteristics of the ignition and combustion processes for typical registration methods. It was found that for all heating schemes, the minimum ignition temperatures have comparable values. Minimum ignition delay times were recorded during convective heating. The maximum combustion temperatures were achieved with radiation heating. We determined the values of limiting heat fluxes, sufficient to initiate the combustion of slurries fuels during conductive, convective and radiative heating.
Funder
Tomsk Polytechnic University
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Reference33 articles.
1. Composite water-containing fuels from coals and petroleum products;Gorlov;Solid Fuel Chem.,2004
2. Coal-water suspensions in power engineering
3. Fuel suspensions based on fuel oil, peat, waste wood, and charcoal
4. The dynamics of droplet transformations in the flame of a water-fuel oil emulsion used as the fuel for boiler installations;Vedruchenko;Therm. Eng.,2000
5. Organic coal-water fuel: Problems and advances (Review)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献