Abstract
In this work, a thermodynamic model of CO2-H2O-NaCl-MgCO3 systems is developed. The new model is applicable for 0–200 °C, 1–1000 bar and halite concentration up to saturation. The Pitzer model is used to calculate aqueous species activity coefficients and the Peng–Robinson model is used to calculate fugacity coefficients of gaseous phase species. Non-linear equations of chemical potentials, mass conservation, and charge conservation are solved by successive substitution method to achieve phase existence, species molality, pH of water, etc., at equilibrium conditions. From the calculated results of CO2-H2O-NaCl-MgCO3 systems with the new model, it can be concluded that (1) temperature effects are different for different MgCO3 minerals; landfordite solubility increases with temperature; with temperature increasing, nesquehonite solubility decreases first and then increases at given pressure; (2) CO2 dissolution in water can significantly enhance the dissolution of MgCO3 minerals, while MgCO3 influences on CO2 solubility can be ignored; (3) MgCO3 dissolution in water will buffer the pH reduction due to CO2 dissolution.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献