Panoramic Dental Radiography Image Enhancement Using Multiscale Mathematical Morphology

Author:

Román Julio César MelloORCID,Fretes Vicente R.ORCID,Adorno Carlos G.ORCID,Silva Ricardo GaribaORCID,Noguera José Luis VázquezORCID,Legal-Ayala HoracioORCID,Mello-Román Jorge DanielORCID,Torres Ricardo Daniel Escobar,Facon JacquesORCID

Abstract

Panoramic dental radiography is one of the most used images of the different dental specialties. This radiography provides information about the anatomical structures of the teeth. The correct evaluation of these radiographs is associated with a good quality of the image obtained. In this study, 598 patients were consecutively selected to undergo dental panoramic radiography at the Department of Radiology of the Faculty of Dentistry, Universidad Nacional de Asunción. Contrast enhancement techniques are used to enhance the visual quality of panoramic dental radiographs. Specifically, this article presents a new algorithm for contrast, detail and edge enhancement of panoramic dental radiographs. The proposed algorithm is called Multi-Scale Top-Hat transform powered by Geodesic Reconstruction for panoramic dental radiography enhancement (MSTHGR). This algorithm is based on multi-scale mathematical morphology techniques. The proposal extracts multiple features of brightness and darkness, through the reconstruction of the marker (obtained by the Top-Hat transformation by reconstruction) starting from the mask (obtained by the classic Top-Hat transformation). The maximum characteristics of brightness and darkness are added to the dental panoramic radiography. In this way, the contrast, details and edges of the panoramic radiographs of teeth are improved. For the tests, MSTHGR was compared with the following algorithms: Geodesic Reconstruction Multiscale Morphology Contrast Enhancement (GRMMCE), Histogram Equalization (HE), Brightness Preserving Bi-Histogram Equalization (BBHE), Dual Sub-Image Histogram Equalization (DSIHE), Minimum Mean Brightness Error Bi-Histogram Equalization (MMBEBHE), Quadri-Histogram Equalization with Limited Contrast (QHELC), Contrast-Limited Adaptive Histogram Equalization (CLAHE) and Gamma Correction (GC). Experimentally, the numerical results show that the MSTHGR obtained the best results with respect to the Contrast Improvement Ratio (CIR), Entropy (E) and Spatial Frequency (SF) metrics. This indicates that the algorithm performs better local enhancements on panoramic radiographs, improving their details and edges.

Funder

Consejo Nacional de Ciencia y Tecnología, Paraguay

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3