Fabrication and Characterization of Core-Shell Electrospun Fibrous Mats Containing Medicinal Herbs for Wound Healing and Skin Tissue Engineering

Author:

Zahedi Elahe,Esmaeili Akbar,Eslahi Niloofar,Shokrgozar Mohammad Ali,Simchi AbdolrezaORCID

Abstract

Nanofibrous structures mimicking the native extracellular matrix have attracted considerable attention for biomedical applications. The present study aims to design and produce drug-eluting core-shell fibrous scaffolds for wound healing and skin tissue engineering. Aloe vera extracts were encapsulated inside polymer fibers containing chitosan, polycaprolactone, and keratin using the co-axial electrospinning technique. Electron microscopic studies show that continuous and uniform fibers with an average diameter of 209 ± 47 nm were successfully fabricated. The fibers have a core-shell structure with a shell thickness of about 90 nm, as confirmed by transmission electron microscopy. By employing Fourier-transform infrared spectroscopy, the characteristic peaks of Aloe vera were detected, which indicate successful incorporation of this natural herb into the polymeric fibers. Tensile testing and hydrophilicity measurements indicated an ultimate strength of 5.3 MPa (elongation of 0.63%) and water contact angle of 89°. In-vitro biological assay revealed increased cellular growth and adhesion with the presence of Aloe vera without any cytotoxic effects. The prepared core-shell fibrous mats containing medical herbs have a great potential for wound healing applications.

Funder

Iran National Science Foundation

Publisher

MDPI AG

Subject

Drug Discovery,Pharmacology, Toxicology and Pharmaceutics (miscellaneous),Pharmaceutical Science

Reference52 articles.

1. Skin regeneration scaffolds: a multimodal bottom-up approach

2. A review on wound dressings with an emphasis on electrospun nanofibrous polymeric bandages;Rezaeian;Polym. Adv. Technol.,2009

3. Tissue Engineering, An Overview;Bell,1993

4. Cell-interactive 3D-scaffold; advances and applications

5. Electrospun PCL/gelatin composite nanofiber structures for effective guided bone regeneration membranes

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3